Difference between revisions of "ATM 33.50 (Exhaust Gas Temperature Model)"

From Nefmoto

Jump to: navigation, search
(Created page with "Refer to the funktionsrahmen for the following diagrams: atm-main atm-atm-b1 Exhaust gas temperature model (cylinder bank 1) overview atm-tmp-stat TMP_STAT engine speed & rela...")
 
Line 1: Line 1:
Refer to the funktionsrahmen for the following diagrams:
+
See the ''funktionsrahmen'' for the following diagrams:
  
atm-main
+
zwgru-zwgru
  
atm-atm-b1 Exhaust gas temperature model (cylinder bank 1) overview
+
zwgru-zw-nws Sub-function ZW_NWS: Provision for binary or
 +
continously variable camshaft control
  
atm-tmp-stat TMP_STAT engine speed & relative cylinder charge map and corrected for temperature for acceleration, intake air temp., catalyst heating, catalyst warming, ignition angle, lambda and cold engine
+
zwgru-dzw-nws Sub-function DZW_NWS: Provision for binary or
 +
continously variable camshaft control (delta-ignition angle)
  
atm-dynamik Temperature dynamic for exhaust gas and catalytic converter temperature (in and near the catalytic converter)
+
<u>ZWGRU 23.110 Function Description</u>
  
atm-tabgm Temperature dynamic: exhaust gas, exhaust pipe wall effect, from the exhaust gas temperature tabgm
+
 
 +
The
 +
fundamental ignition angle is provided by the map KFZW. The sub-function ZW_NWS
 +
describes the provision for any necessary camshaft timing (NWS). For binary
 +
camshaft control, the factor fnwue switches seamlessly between the maps KFZW
 +
and KFZW2. In the case of continuously variable camshaft control which depends
 +
on the camshaft overlap angle wnwue, an ignition angle correction DZWNWSUE
 +
added to KFZW. The currently valid camshaft control version is defined by the
 +
system constant SY_NWS in the software generation:
  
atm-tkatm Temperature dynamic for the temperature near the catalytic converter
+
 
 +
SY_NWS
 +
= 0: no camshaft control
  
atm-exotherme Exothermic temperature increase near the catalyst from measurement sites tabgm to tikatm
+
 +
SY_NWS
 +
= 1: binary camshaft control
  
atm-tikatm Temperature dynamic for the temperature in the catalytic converter
+
   
 +
SY_NWS
 +
= 2: continuously variable NWS
  
atm-exoikat Exothermic temperature increase in the catalyst from measurement sites tabgm to tikatm
+
 +
SY_NWS
 +
&gt; 2: not
 +
defined.
  
atm-kr-stat Exhaust gas temperature in the exhaust manifold under steady-state conditions
+
 
 +
The
 +
software is translated conditionally, i.e. only one variant is available in the
 +
EPROM. SY_NWS is not in the EPROM and cannot be applied. The same additive
 +
ignition angle correction is performed as when calculating the optimum ignition
 +
angle (see %MDBAS), i.e. exhaust gas recirculation and lambda dependence are
 +
considered. The temperature dependence is considered in a separate function (%ZWWL).
 +
The result is the ignition angle for cylinder bank 1 (zwref) which is also the
 +
reference for cylinder bank 2. For cylinder bank 2, the ignition angle offset
 +
dzwb2 is added to the ignition angle.
  
atm-kr-dyn Exhaust gas temperature in the exhaust manifold under dynamic conditions
+
 
 +
<u>ZWGRU 23.110 Application Notes</u>
  
atm-tmp-start Calculation of the exhaust gas or exhaust pipe wall temperature at engine start
+
 
 +
The
 +
maps KFZW and KFZW2 are applied when the
 +
engine is warm for the respective camshaft control position, exhaust gas
 +
recirculation is inactive and lambda = 1. If the engine does not knock, the
 +
optimal ignition angle is input. For engine knock, the knock limit is input.
  
atm-tpe-logik Calculation of the dew point at the pre-cat and post-cat lambda probes
+
                                                                                                                                                               
 +
{| border="1"
 +
|-
 +
|
 +
Parameter
  
atm-sp-nachl Storage of the dew point conditions at engine switch off
+
 +
|
 +
Description
  
atm-mean Calculation of etazwist average values
+
 +
|-
 +
|
 +
CNOKT
  
atm-tmp-umgm If no ambient temperature sensor is available, calculate a substitute from ambient temperature (tans)
+
 +
|
 +
Codeword for lower octane fuel
  
atm-mst If tabst_w is not correct tabstatm = maximum value, request for delay B_nlatm as a function of engine speed and tatu-threshold)
+
 +
|-
 +
|
 +
CWZWBANK
  
ATM 33.50 (Exhaust Gas Temperature Model) Function Description
+
 +
|
 +
Codeword for enabling cylinder-specific ignition
 +
angle offsets
  
The simulated exhaust gas temperatures tabgm and tabgkrm (for SY_TURBO = 1) and catalytic converter temperatures tkatm and tikatm are used for the following purposes:
+
 +
|-
 +
|
 +
DZWNWSUE
  
1. Monitoring the catalyst. If the catalytic converter falls below its starting temperature, then a fault can be detected.
+
 +
|
 +
Delta ignition angle depending on camshaft overlap
 +
angle
  
2. For lambda control on the probe after the catalytic converter. This control is only activated after engine start, when the catalyst has exceeded its start-up temperature.
+
 +
|-
 +
|
 +
KFDWSZ
  
3. For the probe heater control after engine start. If the simulated dew point is exceeded, the probe heater is turned on.
+
 +
|
 +
Delta ignition angle for cylinder bank 1-specific
 +
ignition advance; through camshaft control
  
4. Monitoring the heated exhaust gas oxygen (HEGO) sensor (i.e. lambda probe) heating system. If the exhaust gas temperature exceeds 800°C for example, then the lambda probe heater will be switched off, so that the probe is not too hot.
+
 +
|-
 +
|
 +
KFDWSZ2
  
5. For fan motor control.
+
 +
|
 +
Delta ignition angle for cylinder bank 2-specific
 +
ignition advance; through camshaft control
  
6. For switching on component protection.
+
 +
|-
 +
|
 +
KFDZK
  
This function provides only a rough approximation of the exhaust gas and catalytic converter temperature profiles, whereas throughout the application especially the four monitoring areas (dew point profiles in the exhaust gas, catalytic converter monitoring, enabling and shutting off lambda probe heating and high temperatures for component protection) should be considered to be critical.
+
 +
|
 +
Delta ignition angle during knock
  
1. Basic function
+
 +
|-
 +
|
 +
KFDZWKG
  
Steady-state temperature (tatmsta): the same applies for takrstc
+
 +
|
 +
Ignition angle correction by moving the knock limit
  
With the engine speed/relative cylinder charge map KFTATM the steady-state exhaust gas temperature before the catalyst is set. This temperature is corrected for ambient temperature or simulated ambient temperature from the characteristic ATMTANS:
+
 +
|-
 +
|
 +
KFSWKFZK
  
during boost with the constant TATMSA,
+
 +
|
 +
Ignition angle retardation threshold for switching
 +
between ignition angle maps
  
during catalyst heating with the constant TATMKH; catalyst warming with the constant TATMKW
+
 +
|-
 +
|
 +
KFZW
  
with the ignition-angle efficiency map KFATMZW temperature as a function of ML and ETAZWIST
+
 +
|
 +
Ignition angle map
  
with the desired lambda map KFATMLA temperature as a function of ML and LAMSBG_W
+
 +
|-
 +
|
 +
KFZW2
  
for a cold engine block (TMOT - TATMTMOT) with TATMTMOT = 90°C.
+
 +
|
 +
Ignition angle map, variant 2
  
The catalyst temperature (exothermic) is corrected for
+
 +
|-
 +
|
 +
TMZIZWV
  
Temperature increase with the characteristic KATMEXML or KATMIEXML as a function of air mass
+
 +
|
 +
Engine temperature threshold for enabling
 +
cylinder-specific ignition angle adjustment
  
Temperature reduction with KLATMZWE or KLATMIZWE as a function of etazwimt (ignition angle influence)
+
 +
|-
 +
|
 +
TSWKR
  
Lambda influence with KLATMLAE or KLATMILAE as a function of lambsbg_w
+
 +
|
 +
Time lag for summing ignition angle retardation
 +
queries
  
Temperature set at TKATMOE or TIKATMOE at tabgm <TABGMEX or B_sa = 1
+
 +
|-
 +
|
 +
VZIZWV
  
Different temperature increases are applied for the temperature in the catalytic converter tikatm and the temperature after the catalytic converter tkatm due to exothermic reaction and cooling and different ignition angles and lambda-corrections.
+
 +
|
 +
Vehicle speed threshold for disabling
 +
cylinder-specific ignition angle adjustment
  
The time-based influence of the exhaust gas temperature before the catalytic converter:
+
 +
|-
 +
|
 +
Variable
  
Using a PT1 filter (filter time constant ZATMAML) the dynamics of the exhaust gas temperature are simulated and with a PT1 filter (time constant ZATMRML) the dynamics of the inlet manifold wall temperature are simulated.
+
 +
|
 +
Description
  
The exhaust gas temperature and inlet manifold wall temperature are weighted by the division factor FATMRML.
+
 +
|-
 +
|
 +
B_KFZK
  
The catalytic converter temperature tkatm is calculated from the exhaust gas temperature tabgm along with the PT1 filter (filter time constant ZATMKML).
+
 +
|
 +
Condition flag for anti-knock map
  
The temperature in the catalyst tikatm is modelled from the exhaust gas temperature tabgm via three filters (time constant ZATMIKML) using the heat transfer principle. Due to a thrust caused by the small air mass flow in the catalytic converter, there is a possible exhaust gas temperature increase due to the greater influence on the matrix temperature by the exhaust gas throughput. This thrust-based temperature increase can be modelled by the positive B_sa side with a temperature, which is composed of the catalyst temperature tikatm and an offset TATMSAE, will be initialised. The time constants of the PT1-filter ZATMIKML are represented by air-mass-dependent characteristic curves.
+
 +
|-
 +
|
 +
B_KRDWS
  
The initial values ​​for the exhaust and catalyst temperature at engine start can be calculated from the temperatures at switch-off and delay times. The starting values ​​for the exhaust gas and catalyst temperatures should approximate to the manifold wall temperatures at the probe insertion points a few minutes after switch-off. The filter for the exhaust gas temperature is stopped by setting B_stend = 0. The filter for the manifold wall temperature is stopped when B_atmtpa = 1. The filter for the catalyst temperature will be enabled only when B_atmtpk = 1.
+
 +
|
 +
Condition flag for knock control safety retardation
  
2. Dew Point Detection
+
 +
|-
 +
|
 +
B_NOZWE
  
Initial values ​​for the exhaust gas temperature tabgmst and catalyst temperature tkatmst
+
 +
|
 +
Condition flag for no ignition angle intervention on
 +
the engine torque structure
  
When stopping the engine (C_nachl 0 ® 1) the temperatures tabgm and tkatm are stored.
+
 +
|-
 +
|
 +
C_INI
  
When starting the engine, the initial temperatures tabgmst and tkatmst are calculated from the switch-off temperature (corrected for ambient temperature) and a factor obtained from maps KFATMABKA or KFATMABKK as a function of tabstatm and tatu.
+
 +
|
 +
Condition flag for intialising ECU
  
During power fail the switch-off temperature will be determined from the constant TATMSTI.
+
 +
|-
 +
|
 +
DZWB2
  
For test condition (B_faatm = 1), the initial temperatures are given by the constants TASTBFA and TKSTBFA.
+
 +
|
 +
Ignition angle offset for cylinder bank 2
  
Integrated Heat Quantity iwmatm_w
+
 +
|-
 +
|
 +
DZWBANK
  
The dew point end time is approximately proportional to the heat quantity after engine start. The heat quantity = Integral (temp. ´ air mass ´ Cp) is calculated from the steady-state exhaust gas temperature tatmsta plus TATMWMK multiplied by the air mass. The result of the integration multiplied by the heat capacity at constant pressure Cp (approximately 1 kJ/kgK) gives the heat quantity.
+
 +
|
 +
Cylinder-bank specific ignition angle offset
  
Dew point end for the pre-cat lambda probe B_atmtpa and post-cat lambda probe B_atmtpk
+
 +
|-
 +
|
 +
DZWKG
  
The calculated exhaust gas temperature at engine start tabgmst approximates to the exhaust pipe wall temperature. If the exhaust pipe wall temperature is greater than 60°C for example then no condensation occurs. The values in the map KFWMABG ​​for these temperatures are less than 14 kJ, so the dew point end is detected immediately, or after only a few seconds.
+
 +
|
 +
Delta ignition angle for moving the knock limit
  
For catalytic converter heating with thermal reaction (B_trkh = 1) the values in maps KFWMABG or KFWMKAT are multiplied by the factor WMKATKH or WMABGKH respectively. Thus, the dew point end-times are very short for this mode of operation.
+
 +
|-
 +
|
 +
DZWOAG
  
Repeated starts (extension of the dew point-end-times)
+
 +
|
 +
Exhaust gas recirculation rate-dependent ignition
 +
angle correction of the optimum ignition angle
  
If the engine had not reached the dew point end (B_atmtpa = 0 and B_atmtpf = 0) then when the engine restarts, the counter zwmatmf is increased by 1. After several periods of very short engine running (e.g. 3), the counter zwmatmf value would be set equal to 3. With a constant FWMABGW = 0.25 for example, the values in the map KFWMABG increase by a factor equal to (zwmatmf ´ KFWMABG + 1) = 1.75. When the engine starts, the dew point end time from the last engine run is detected and the counter zwmatmf is reset.
+
 +
|-
 +
|
 +
DZWOL
  
Storage of the dew point end condition in the delay
+
 +
|
 +
Lambda-dependent ignition angle correction of the
 +
optimum ignition angle
  
For the determination of repeat start dew point end the conditions B_atmtpa in the flag B_atmtpf and B_atmtpk in the flag B_atmtpl are saved at engine switch-off due to a regular switch-off using the ignition or stall (B_stndnl). The function of dew point end for the post-cat lambda probe B_atmtpk is analogous to the function for B_atmtpa.
+
 +
|-
 +
|
 +
DZWZK
  
3. Calculation of a simulated ambient temperature from the intake air temperature (tans) if no ambient temperature sensor is available.
+
 +
|
 +
Delta ignition angle during knock
  
The simulated temperature tatu will be used for calculating the temperature correction via the characteristic ATMTANS and for determining the starting temperatures tabgmst and tkatmst. The intake air temperature (tans) is corrected with the constant DTUMTAT and under certain conditions stored in continuous RAM. If for example at engine start, the temperature tatu > tans, then the temperature value tatu is set on the lower tans value.
+
 +
|-
 +
|
 +
FNWUE
  
With the constant TATMWMK (negative value) the difference in dew point end between catalyst heating and no catalyst heating can be increased.
+
 +
|
 +
Weighting factor for ignition angle overlap (inlet)
  
When catalytic converter heating is active B_khtr = 1 and the bit B_atmtpa can be set equal to 1 immediately after engine start. This is possible only when no problematic condensation is formed during catalyst heating.
+
 +
|-
 +
|
 +
LAMBAS
  
With the system constants SY_STERVK = 1 cylinder bank 2 can be applied separately for stereo systems.
+
 +
|
 +
Basic lambda
  
For SY_TURBO = 1 the exhaust gas temperature tabgm is essentially identical in addition to the modeled temperature in the manifold tabgkrm.
+
 +
|-
 +
|
 +
NMOT
  
ATM 33.50 Application Notes
+
 +
|
 +
Engine speed
  
1. Installation locations for temperature sensors in this application, running in the direction of flow:
+
 +
|-
 +
|
 +
NMOT W
  
- In probe installation position before catalytic converter-
+
 +
|
 +
Engine speed (Word)
  
1. Exhaust gas temperature (pipe centre) for the high temperatures at high loads for probe heater switch off
+
 +
|-
 +
|
 +
RL_W
  
2. Manifold wall temperature for the determination of the dew-end times. (Condensation protection)
+
 +
|
 +
Relative cylinder charge (Word)
  
- Before the catalytic converter
+
 +
|-
 +
|
 +
SY_NWS
  
3. Exhaust gas temperature (pipe centre) for the catalyst start-up temperature
+
 +
|
 +
System constant for camshaft control: none, binary
 +
(on/off) or continuously variable
  
- In the catalytic converter
+
 +
|-
 +
|
 +
SY_ZIZWV
  
4. Ceramic temperature in and after catalytic converter (in the last third of the catalytic converter or behind the adjoining matrix) to determine the air-mass-dependent time constants.
+
 +
|
 +
''Text must be provided by Mrs
 +
Sauer''
  
- After the catalytic converter
+
 +
|-
 +
|
 +
TMOT
  
5. Pipe wall temperature at probe installation site for the determination of the dew-end times (condensation protection).
+
 +
|
 +
Engine temperature
  
Temperature measuring point 3 can be omitted if the distance from probe to catalytic converter is smaller than about 30 cm. The temperature drop from probe installation site to catalytic converter can then be neglected.
+
 +
|-
 +
|
 +
VFZG
  
For the application of the functional data the modelled temperatures will always be compared with the measured temperatures and the functional data amended until a sufficiently high accuracy is achieved. In so doing, it will be the actual catalyst temperature, the temperature increase due to the exothermic reaction is not considered in the model.
+
 +
|
 +
Vehicle speed
  
2. Map KFTATM
+
 +
|-
 +
|
 +
WKRMA
  
For the determination of the steady-state temperature for example, before the catalytic converter the temperature corrections should not function. The cooling capacity of the wind on the dynamometer or on the measuring wheel can be simulated only very roughly at the higher engine load range. The map values ​​can be determined on the rolling road dynamometer, but should be corrected on an appropriate test drive.
+
 +
|
 +
Average of the ignition angle retardation during
 +
knock control, general (in limp mode with safety)
  
3. Temperature Corrections
+
 +
|-
 +
|
 +
WNWUE
  
- TATMSA
+
 +
|
 +
Camshaft overlap angle
  
Boost can cause low exhaust temperatures that fall below the starting temperature of the catalyst. The longer the time period for the thrust condition, the lower the exhaust and catalyst temperatures. For catalyst diagnosis during boost, the exhaust gas temperature model is more likely to calculate a lower value than the measured temperature.
+
 +
|-
 +
|
 +
ZWGRU
  
- ATMTANS
+
 +
|
 +
Fundamental ignition angle
  
At low ambient temperatures, exhaust gas temperature can fall below the catalyst start-up temperature. Therefore, the model temperature is only corrected at the low temperature range.
+
 +
|-
 +
|
 +
ZWNWS
  
- TATMKH
+
 +
|
 +
Fundamental ignition angle taking camshaft control
 +
into consideration
  
As long as the catalyst-heating measures are effective, higher exhaust temperatures will result.
+
 +
|-
 +
|
 +
ZZYLZUE
  
- TATMKW
+
 +
|
 +
ECU cylinder counter for ignition calculation
  
The catalyst operating temperature will not be not reached during prolonged idling, so the exhaust gas temperature can be raised by the catalyst warming function.
+
 
+
|}
- KFATMZW
+
 
+
The temperature increase as a result of ignition angle retardation can be determined on a rolling road dynamometer. First, on the dynamometer, the characteristic field values ​​KFTATM are applied without ignition angle correction. Ignition angles are then modified so that allowed etazwist values will result in the map. Through the corresponding air mass, the temperature increase will then be displayed in the map KFATMZW.
+
 
+
- KFATMLA
+
 
+
The exhaust temperature is reduced by enrichment. The application is similar to KFATMZW, except that the ignition angle efficiency is changed instead of the enrichment factor.
+
 
+
- TATMTMOT
+
 
+
The map KFTATM is applied with a warm engine. Thus, the model exhaust gas temperature has smaller deviations during cold start. For this operating mode, the temperature is corrected with the difference of the cold engine temperature and the warm engine temperature.
+
 
+
TATMTMOT should be about 90 to 100°C.
+
 
+
4. Maps ZATMAML, ZATMRML, FATMRML, ZATMKML, ZATMKKML, ZATMIKML und ZATMIKKML
+
 
+
The air-mass-dependent time constants ZATMAML, ZATMRML (temperature measuring points 1 or 3), and ZATMKML, ZATMKKML, ZATMIKML, ZATMIKKML (temperature measuring point 4), can help to more accurately determine “spikes in the air mass” during sudden load variations. Thereby "air mass jumps" at full load and in particular during boost can be avoided. For example, for an air mass jump from 30 kg/hr to 80 kg/hr, the measured time constant is applied to the air mass flow of 80 kg/hr. For large air mass jumps during idle, the time constants ZATMKKML and ZATMIKKML can be input instead of ZATMKML or ZATMIKML if required.
+
 
+
5. Block EXOTHERME:
+
 
+
- KATMEXML
+
 
+
The exothermic temperature is a function of air mass flow (warming by realizing emissions, reducing warming via a larger air mass). First KATMEXML applies, then KLATMZWE, KLATMLAE.
+
 
+
- KLATMZWE
+
 
+
When ignition angle retardation increases the temperature before the catalyst, the catalyst temperature drops.
+
 
+
- KLATMLAE
+
 
+
For lambda < 1 (richer), the air mass is lacking to improve emissions so the catalyst temperature decreases.
+
 
+
- TABGMEX
+
 
+
If the temperature before the catalyst tabgm < TABGMEX (catalyst switch-off temperature) then the temperature correction = TKATMOE.
+
 
+
- TKATMOE
+
 
+
Temperature correction during boost or through tabgm> TABGMEX
+
 
+
- TATMSAE
+
 
+
Temperature increase in the boost in the catalyst in terms of tkatm
+
 
+
Block EXOIKAT:
+
 
+
- KATMIEXML, KLATMIZWE, KLATMILAE, TIKATMOE
+
 
+
Application depends on the application for Block EXOTHERME
+
 
+
- TATMSAE
+
 
+
Temperature increase in the thrust in the catalyst in terms of tikatm
+
 
+
6. Dew point end times for exhaust gas temperatures vary greatly between the centre of the exhaust pipe and the pipe wall. Dew point end times for the tube wall temperatures before the catalyst (temperature measuring points 2) or after the catalyst (temperature measuring points 5) should be used. These times are usually due to delaying control readiness for too long, in which case the temperature gradients at the probe mounting location must be examined more closely. To avoid probe damage by “water hammer”, the sensor heater must be fully turned on until the dew point temperature is exceeded or the dew point end time is detected thus condensation will no longer occur.
+
 
+
When the switch-off time in the ECU delay is calculated, then the switch-off time tabst_w after ECU delay will be incorrect. At engine start after ECU delay, the switch-off time tabstatm therefore, will be set to the maximum value of 65,535 (i.e. 216-1). The ECU delay requirement for the time TNLATM when engine speed > TNLATMTM & tumg (tatu) > TNLATMTU.
+
 
+
8. For blocks KR_STAT and KR_DYN as appropriate, the descriptions in points 3 and 4 shall apply.
+
 
+
Typical Values:
+
 
+
KFTATM: x: engine speed/RPM, y: relative cylinder charge/%, z: temperature/°C
+
 
+
<table>
+
<tr>
+
<td>
+
</td>
+
<td>
+
800
+
</td>
+
<td>
+
1200
+
</td>
+
<td>
+
1800
+
</td>
+
<td>
+
2400
+
</td>
+
<td>
+
3000
+
</td>
+
<td>
+
4000
+
</td>
+
<td>
+
5000
+
</td>
+
<td>
+
6000
+
</td>
+
</tr>
+
<tr>
+
<td>
+
15
+
</td>
+
<td>
+
380
+
</td>
+
<td>
+
400
+
</td>
+
<td>
+
420
+
</td>
+
<td>
+
450
+
</td>
+
<td>
+
480
+
</td>
+
<td>
+
520
+
</td>
+
<td>
+
550
+
</td>
+
<td>
+
580
+
</td>
+
</tr>
+
<tr>
+
<td>
+
22
+
</td>
+
<td>
+
400
+
</td>
+
<td>
+
420
+
</td>
+
<td>
+
450
+
</td>
+
<td>
+
480
+
</td>
+
<td>
+
520
+
</td>
+
<td>
+
550
+
</td>
+
<td>
+
580
+
</td>
+
<td>
+
610
+
</td>
+
</tr>
+
<tr>
+
<td>
+
30
+
</td>
+
<td>
+
420
+
</td>
+
<td>
+
450
+
</td>
+
<td>
+
480
+
</td>
+
<td>
+
520
+
</td>
+
<td>
+
550
+
</td>
+
<td>
+
580
+
</td>
+
<td>
+
610
+
</td>
+
<td>
+
650
+
</td>
+
</tr>
+
<tr>
+
<td>
+
50
+
</td>
+
<td>
+
450
+
</td>
+
<td>
+
480
+
</td>
+
<td>
+
520
+
</td>
+
<td>
+
550
+
</td>
+
<td>
+
580
+
</td>
+
<td>
+
610
+
</td>
+
<td>
+
650
+
</td>
+
<td>
+
700
+
</td>
+
</tr>
+
<tr>
+
<td>
+
70
+
</td>
+
<td>
+
470
+
</td>
+
<td>
+
520
+
</td>
+
<td>
+
550
+
</td>
+
<td>
+
580
+
</td>
+
<td>
+
610
+
</td>
+
<td>
+
660
+
</td>
+
<td>
+
700
+
</td>
+
<td>
+
750
+
</td>
+
</tr>
+
<tr>
+
<td>
+
100
+
</td>
+
<td>
+
490
+
</td>
+
<td>
+
550
+
</td>
+
<td>
+
580
+
</td>
+
<td>
+
610
+
</td>
+
<td>
+
650
+
</td>
+
<td>
+
700
+
</td>
+
<td>
+
750
+
</td>
+
<td>
+
790
+
</td>
+
</tr>
+
<tr>
+
<td>
+
120
+
</td>
+
<td>
+
510
+
</td>
+
<td>
+
560
+
</td>
+
<td>
+
610
+
</td>
+
<td>
+
650
+
</td>
+
<td>
+
700
+
</td>
+
<td>
+
750
+
</td>
+
<td>
+
790
+
</td>
+
<td>
+
840
+
</td>
+
</tr>
+
<tr>
+
<td>
+
140
+
</td>
+
<td>
+
530
+
</td>
+
<td>
+
580
+
</td>
+
<td>
+
650
+
</td>
+
<td>
+
700
+
</td>
+
<td>
+
750
+
</td>
+
<td>
+
790
+
</td>
+
<td>
+
840
+
</td>
+
<td>
+
900
+
</td>
+
</tr>
+
</table>
+
 
+
KFATMZW: x: temperature/°C, y: ml_w/kg/hr, z: etazwimt
+
 
+
<table>
+
<tr>
+
<td>
+
</td>
+
<td>
+
20
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
80
+
</td>
+
<td>
+
150
+
</td>
+
<td>
+
250
+
</td>
+
<td>
+
400
+
</td>
+
</tr>
+
<tr>
+
<td>
+
1.00
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.95
+
</td>
+
<td>
+
15
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
50
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
70
+
</td>
+
<td>
+
75
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.90
+
</td>
+
<td>
+
15
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
80
+
</td>
+
<td>
+
100
+
</td>
+
<td>
+
125
+
</td>
+
<td>
+
140
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.80
+
</td>
+
<td>
+
20
+
</td>
+
<td>
+
80
+
</td>
+
<td>
+
120
+
</td>
+
<td>
+
150
+
</td>
+
<td>
+
180
+
</td>
+
<td>
+
200
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.70
+
</td>
+
<td>
+
25
+
</td>
+
<td>
+
100
+
</td>
+
<td>
+
150
+
</td>
+
<td>
+
190
+
</td>
+
<td>
+
210
+
</td>
+
<td>
+
220
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.60
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
115
+
</td>
+
<td>
+
175
+
</td>
+
<td>
+
210
+
</td>
+
<td>
+
230
+
</td>
+
<td>
+
245
+
</td>
+
</tr>
+
</table>
+
 
+
KFATMLA: x: temperature/°C, y: ml_w/kg/hr, z: lamsbg_w
+
 
+
<table>
+
<tr>
+
<td>
+
</td>
+
<td>
+
20
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
80
+
</td>
+
<td>
+
150
+
</td>
+
<td>
+
250
+
</td>
+
<td>
+
400
+
</td>
+
</tr>
+
<tr>
+
<td>
+
1.15
+
</td>
+
<td>
+
5
+
</td>
+
<td>
+
10
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
50
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
70
+
</td>
+
</tr>
+
<tr>
+
<td>
+
1.00
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
<td>
+
0.0
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.95
+
</td>
+
<td>
+
5
+
</td>
+
<td>
+
10
+
</td>
+
<td>
+
20
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
45
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.90
+
</td>
+
<td>
+
15
+
</td>
+
<td>
+
25
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
50
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
75
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.80
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
70
+
</td>
+
<td>
+
85
+
</td>
+
<td>
+
100
+
</td>
+
</tr>
+
<tr>
+
<td>
+
0.70
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
80
+
</td>
+
<td>
+
90
+
</td>
+
<td>
+
100
+
</td>
+
<td>
+
120
+
</td>
+
</tr>
+
</table>
+
 
+
KFWMABG: x: energy/kJ, y: tabgmst/°C, z: tmst/°C
+
 
+
<table>
+
<tr>
+
<td>
+
</td>
+
<td>
+
-40
+
</td>
+
<td>
+
</td>
+
<td>
+
15
+
</td>
+
<td>
+
25
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
55
+
</td>
+
<td>
+
60
+
</td>
+
</tr>
+
<tr>
+
<td>
+
-40
+
</td>
+
<td>
+
200
+
</td>
+
<td>
+
160
+
</td>
+
<td>
+
150
+
</td>
+
<td>
+
140
+
</td>
+
<td>
+
100
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
30
+
</td>
+
</tr>
+
<tr>
+
<td>
+
</td>
+
<td>
+
180
+
</td>
+
<td>
+
150
+
</td>
+
<td>
+
120
+
</td>
+
<td>
+
110
+
</td>
+
<td>
+
80
+
</td>
+
<td>
+
50
+
</td>
+
<td>
+
20
+
</td>
+
</tr>
+
<tr>
+
<td>
+
15
+
</td>
+
<td>
+
160
+
</td>
+
<td>
+
140
+
</td>
+
<td>
+
60
+
</td>
+
<td>
+
55
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
40
+
</td>
+
<td>
+
0.45
+
</td>
+
</tr>
+
<tr>
+
<td>
+
25
+
</td>
+
<td>
+
140
+
</td>
+
<td>
+
120
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
15
+
</td>
+
<td>
+
10
+
</td>
+
<td>
+
0.45
+
</td>
+
</tr>
+
<tr>
+
<td>
+
60
+
</td>
+
<td>
+
120
+
</td>
+
<td>
+
30
+
</td>
+
<td>
+
20
+
</td>
+
<td>
+
15
+
</td>
+
<td>
+
10
+
</td>
+
<td>
+
5
+
</td>
+
<td>
+
0.45
+
</td>
+
</tr>
+
</table>
+
 
+
KFWMKAT values ​​correspond to KFWMABG ´ 5
+
 
+
In the heat quantity maps KFWMABG and KFWMKAT a value of 0.0 is never required! It should always have at least the value to be entered; the 2 sec corresponds to idle after cold start. Only then does the repeat-start counter operate after several starts where the dew point was not reached.
+
 
+
ZATMAML ml_w/kg/hr, Time constant/sec 10, 30 ; 20, 20 ; 40, 13 ; 80, 5 ; 180, 4 ; 400, 3 ; 600, 2 ;
+
 
+
ZATMKML ml_w/kg/hr, Time constant/sec 10, 150 ; 20, 60 ; 40, 35 ; 80, 20 ; 180, 10 ; 400, 7 ; 600, 4 ;
+
 
+
ZATMIKML value represents approximately ZATMKML ´ 0.3
+
 
+
ZATMKKML for neutral input, the data must correlate to ZATMKML
+
 
+
ZATMIKKML for neutral input, the data must correlate to ZATMIKML
+
 
+
ZATMRML ml_w/kg/hr, Time constant/sec 10, 300 ; 20, 80 ; 40, 55 ; 80, 30 ; 180, 20 ; 400, 10 ; 600, 7 ;
+
 
+
FATMRML ml_w/kg/hr, Time constant/sec 10, 0.5 ; 20, 0.6 ; 40, 0.7 ; 80, 0.8 ; 180, 0.95 ; 400,0.95 ; 600, 0.96;
+
 
+
KATMEXML ml_w/kg/hr, Time constant/sec 10, 0 ; 20, 0 ; 40, 0 ; 80, 0 ; 180, 0 ; 400, 0 ;
+
 
+
KLATMZWE etazwimt, Factor 1, 0 ; 0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ; 0.6, 0 ;
+
 
+
KLATMLAE lamsbg_w, Factor 1.15, 0 ; 1 , 0 ;0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ;
+
 
+
TATMTP: 52°C
+
 
+
TKATMOE: 0°C
+
 
+
TATMSAE: 0°C
+
 
+
KATMIEXML ml_w/kg/hr, Time constant/sec 10, 0 ; 20, 0 ; 40, 0 ; 80, 0 ; 180, 0 ; 400, 0 ;
+
 
+
KLATMIZWE etazwimt, Factor 1, 0 ; 0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ; 0.6, 0 ;
+
 
+
KLATMILAE lamsbg_w, Factor 1.15, 0 ; 1 , 0 ;0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ;
+
 
+
TIKATMOE: 0°C
+
 
+
KFATMABKA: x: tatu/°C, y: tabstatm_w/seconds, z: no units
+
 
+
<table>
+
<tr>
+
<td>
+
</td>
+
<td>
+
10
+
</td>
+
<td>
+
50
+
</td>
+
<td>
+
180
+
</td>
+
<td>
+
360
+
</td>
+
<td>
+
600
+
</td>
+
<td>
+
1000
+
</td>
+
</tr>
+
<tr>
+
<td>
+
-40
+
</td>
+
<td>
+
0.95
+
</td>
+
<td>
+
0.70
+
</td>
+
<td>
+
0.50
+
</td>
+
<td>
+
0.30
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
-15
+
</td>
+
<td>
+
0.95
+
</td>
+
<td>
+
0.70
+
</td>
+
<td>
+
0.50
+
</td>
+
<td>
+
0.30
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
</td>
+
<td>
+
0.95
+
</td>
+
<td>
+
0.70
+
</td>
+
<td>
+
0.50
+
</td>
+
<td>
+
0.30
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
15
+
</td>
+
<td>
+
0.95
+
</td>
+
<td>
+
0.70
+
</td>
+
<td>
+
0.50
+
</td>
+
<td>
+
0.30
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
40
+
</td>
+
<td>
+
0.95
+
</td>
+
<td>
+
0.70
+
</td>
+
<td>
+
0.50
+
</td>
+
<td>
+
0.30
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
</table>
+
 
+
KFATMABKK: x: tatu/°C, y: tabstatm_w [s], z: no units
+
 
+
<table>
+
<tr>
+
<td>
+
</td>
+
<td>
+
10
+
</td>
+
<td>
+
50
+
</td>
+
<td>
+
180
+
</td>
+
<td>
+
360
+
</td>
+
<td>
+
600
+
</td>
+
<td>
+
1000
+
</td>
+
</tr>
+
<tr>
+
<td>
+
-40
+
</td>
+
<td>
+
0.90
+
</td>
+
<td>
+
0.60
+
</td>
+
<td>
+
0.40
+
</td>
+
<td>
+
0.25
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
-15
+
</td>
+
<td>
+
0.90
+
</td>
+
<td>
+
0.60
+
</td>
+
<td>
+
0.40
+
</td>
+
<td>
+
0.25
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
</td>
+
<td>
+
0.90
+
</td>
+
<td>
+
0.60
+
</td>
+
<td>
+
0.40
+
</td>
+
<td>
+
0.25
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
15
+
</td>
+
<td>
+
0.90
+
</td>
+
<td>
+
0.60
+
</td>
+
<td>
+
0.40
+
</td>
+
<td>
+
0.25
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
<tr>
+
<td>
+
40
+
</td>
+
<td>
+
0.90
+
</td>
+
<td>
+
0.60
+
</td>
+
<td>
+
0.40
+
</td>
+
<td>
+
0.25
+
</td>
+
<td>
+
0.15
+
</td>
+
<td>
+
0.00
+
</td>
+
</tr>
+
</table>
+
 
+
ATMTANS tatu/°C, Temp./°C -40, 60 ; -10, 20 ; 20, 0 ;
+
 
+
TATMSA: 100°C
+
 
+
TATMKH: 80°C
+
 
+
TATMTRKH: 200°C
+
 
+
TATMKW: 100°C
+
 
+
TATMTMOT: 90°C
+
 
+
TATMSTI: 20°C
+
 
+
TASTBFA: 40°C
+
 
+
TKSTBFA: 40°C
+
 
+
TATMWMK: -80°C
+
 
+
WMABGKH: Factor of 1.0
+
 
+
WMKATKH Factor of 1.0
+
 
+
FWMABGW Factor of 0.25
+
 
+
FWMKATW Factor of 0.25
+
 
+
DTUMTAT: 20°C
+
 
+
VTUMTAT: 40 km/h
+
 
+
NTUMTAT: 1800 rpm
+
 
+
IMTUMTAT: 1 kg
+
 
+
TUMTAIT: 20°C
+
 
+
TNLATMTM: 80°C
+
 
+
TNLATMTU: 5°C
+
 
+
TNLATM: 660 seconds
+
 
+
Only when SY_TURBO = 1:
+
 
+
For neutral input (tabgkrm_w = tabgm_w)
+
 
+
KFATMKR = KFTATM
+
 
+
KFATZWK = KFATMZW
+
 
+
KFATLAK = KFATMLA
+
 
+
TATMKRSA = TATMSA
+
 
+
ZATRKRML = ZATMRML
+
 
+
ZATAKRML = ZATMAML
+
 
+
FATRKRML = FATMRML
+
 
+
ATMTANS tans/°C, Temp./°C -40, 40 ; -20, 25 ; 0, 12 ; 20, 0 ; 60, -30
+
 
+
The functional data for cylinder bank 2 correspond to the functional data from cylinder bank 1 Note:
+
 
+
In order that ATM 22:20 for the application is backward compatible the default values should be entered thus: ​​KATMEXML, KLATMZWE, KLATMLAE, TKATMOE = 0 and TABGMEX = 1220°C.
+
 
+
In order that ATM 33.10 remains application-neutral with ATM 22.50, TATMTRKH must be set equal to TATMKH and WMKATKH should be set equal to 1. Tikatm is not used in a function because the input can be used in the path in the exhaust gas temperature model without impact on safety, however, the default values for ​​KATMIEXML, KLATMIZWE, KLATMILAE and TIKATMOE should be set equal to 0 and TABGMEX = 1220°C.
+
 
+
In DKATSP areas TMINKATS and TMAXKATS, a high accuracy is required for tikatm!
+
 
+
<table>
+
<tr>
+
<td>
+
Parameter
+
</td>
+
<td>
+
Description
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ATMTAKR
+
</td>
+
<td>
+
Correction for the manifold temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ATMTANS
+
</td>
+
<td>
+
Temperature correction for the exhaust gas temperature model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
DTUMTAT
+
</td>
+
<td>
+
Offset: intake air temperature ® ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FATMRML
+
</td>
+
<td>
+
Factor for the difference between exhaust gas & exhaust pipe wall temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FATMRML2
+
</td>
+
<td>
+
Factor for the difference between exhaust gas & exhaust pipe wall temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FATRKRML
+
</td>
+
<td>
+
Factor for the difference between exhaust gas & wall temperature in the manifold
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FATRKRML2
+
</td>
+
<td>
+
Factor for the difference between exhaust gas & wall temperature in the manifold, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FWMABGW
+
</td>
+
<td>
+
Factor for heat quantity during repeated starts for pre-cat exhaust gas dew points
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FWMABGW2
+
</td>
+
<td>
+
Factor for heat quantity during repeated starts for pre-cat exhaust gas dew points, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FWMKATW
+
</td>
+
<td>
+
Factor for heat quantities during repeated starts for dew points after main catalyst
+
</td>
+
</tr>
+
<tr>
+
<td>
+
FWMKATW2
+
</td>
+
<td>
+
Factor for heat quantities during repeated starts for dew points after main catalyst, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
IMTUMTAT
+
</td>
+
<td>
+
Integration threshold air mass for determining ambient temperature from TANS
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KATMEXML
+
</td>
+
<td>
+
Exothermic reaction temperature in catalyst, tkatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KATMEXML2
+
</td>
+
<td>
+
Exothermic reaction temperature in catalyst, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KATMIEXML
+
</td>
+
<td>
+
Exothermic reaction temperature in catalyst, tikatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KATMIEXML2
+
</td>
+
<td>
+
Exothermic reaction temperature in catalyst, tikatm, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATLAK
+
</td>
+
<td>
+
Map for lambda correction for manifold exhaust gas temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATLAK2
+
</td>
+
<td>
+
Map for lambda correction for manifold exhaust gas temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMABKA
+
</td>
+
<td>
+
Factor for exhaust gas temperature decrease as a function of stop time and ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMABKA2
+
</td>
+
<td>
+
Factor for exhaust gas temperature decrease as a function of stop time and ambient temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMABKK
+
</td>
+
<td>
+
Factor for reducing the catalyst temperature as a function of stop time and ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMABKK2
+
</td>
+
<td>
+
Factor for reducing the catalyst temperature as a function of stop time and ambient temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMKR
+
</td>
+
<td>
+
Map for steady-state manifold exhaust gas temperature as a function of engine speed and relative cylinder charge
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMKR2
+
</td>
+
<td>
+
Map for steady-state manifold exhaust gas temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMLA
+
</td>
+
<td>
+
Map for exhaust gas temperature correction as a function of lambda
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMLA2
+
</td>
+
<td>
+
Map for exhaust gas temperature correction as a function of lambda, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMZW
+
</td>
+
<td>
+
Map for exhaust gas temperature correction as a function of igntion angle correction
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATMZW2
+
</td>
+
<td>
+
Map for exhaust gas temperature correction as a function of ignition angle, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATZWK
+
</td>
+
<td>
+
Map for ignition angle correction for manifold gas temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFATZWK2
+
</td>
+
<td>
+
Map for ignition angle correction for manifold gas temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFTATM
+
</td>
+
<td>
+
Map for exhaust gas temperature as a function of engine speed and relative cylinder charge
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFTATM2
+
</td>
+
<td>
+
Map for exhaust gas temperature as a function of engine speed and relative cylinder charge for cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFWMABG
+
</td>
+
<td>
+
Map for heat quantity threshold exhaust gas dew points
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFWMABG2
+
</td>
+
<td>
+
Map for heat quantity threshold exhaust gas dew points, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFWMKAT
+
</td>
+
<td>
+
Map for heat quantity threshold dew points after catalyst
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KFWMKAT2
+
</td>
+
<td>
+
Map for heat quantity threshold dew points after catalyst, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMILAE
+
</td>
+
<td>
+
Exothermic temperature decrease through enrichment, tikatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMILAE2
+
</td>
+
<td>
+
Exothermic temperature decrease through enrichment, tikatm, Bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMIZWE
+
</td>
+
<td>
+
Exothermic temperature decrease in catalyst at later ignition angles, tikatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMIZWE2
+
</td>
+
<td>
+
Exothermic temperature decrease in catalyst at later ignition angles, tikatm, Bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMLAE
+
</td>
+
<td>
+
Exothermic temperature decrease through enrichment
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMLAE2
+
</td>
+
<td>
+
Exothermic temperature decrease through enrichment, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMZWE
+
</td>
+
<td>
+
Exothermic temperature decrease in catalyst at later ignition angles, tkatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
KLATMZWE2
+
</td>
+
<td>
+
Exothermic temperature decrease in catalyst at later ignition angles, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
NTUMTAT
+
</td>
+
<td>
+
Speed threshold for determining ambient temperature from TANS
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SEZ06TMUB
+
</td>
+
<td>
+
Sample point distribution, ignition angle efficiency
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SLX06TMUW
+
</td>
+
<td>
+
Sample point distribution, desired lambda
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SLY06TMUW
+
</td>
+
<td>
+
Sample point distribution, desired lambda, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SML06TMUW
+
</td>
+
<td>
+
Sample point distribution, air mass, 6 sample points
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SML07TMUW
+
</td>
+
<td>
+
Sample point distribution, air mass, 7 sample points
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SMT06TMUW
+
</td>
+
<td>
+
Sample point distribution, air mass, 6 sample points
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ST107TMUB
+
</td>
+
<td>
+
Sample point distribution, start temperature at front probe
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ST207TMUB
+
</td>
+
<td>
+
Sample point distribution, start temperature at front probe, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ST307TMUB
+
</td>
+
<td>
+
Sample point distribution, start temperature at rear probe
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ST407TMUB
+
</td>
+
<td>
+
Sample point distribution, start temperature at rear probe, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
STM05TMUB
+
</td>
+
<td>
+
Sample point distribution, engine start temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
STS06TMUW
+
</td>
+
<td>
+
Sample point distribution, exhaust gas mass flow
+
</td>
+
</tr>
+
<tr>
+
<td>
+
STU05TMUB
+
</td>
+
<td>
+
Sample point distribution, simulated ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SY_STERVK
+
</td>
+
<td>
+
System constant condition: stereo before catalyst
+
</td>
+
</tr>
+
<tr>
+
<td>
+
SY_TURBO
+
</td>
+
<td>
+
System constant: turbocharger
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGMEX
+
</td>
+
<td>
+
Exhaust gas temperature below the catalyst switch-off temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TASTBFA
+
</td>
+
<td>
+
Model temperature before pre-cat initial value via B_faatm requirement
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMKH
+
</td>
+
<td>
+
Exhaust gas temperature correction via catalyst heating active
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMKH2
+
</td>
+
<td>
+
Exhaust gas temperature correction via catalyst heating active, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMKRSA
+
</td>
+
<td>
+
Exhaust gas temperature correction in manifold via boost switch-off
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMKW
+
</td>
+
<td>
+
Exhaust gas temperature correction with catalyst warming active
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMSA
+
</td>
+
<td>
+
Exhaust gas temperature correction via boost cut-off
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMSAE
+
</td>
+
<td>
+
Exothermic temperature increase in boost
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMSAE2
+
</td>
+
<td>
+
Exothermic temperature increase in boost, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMSTI
+
</td>
+
<td>
+
Initial value for tabgm, tkatm intial value through power fail
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMTMOT
+
</td>
+
<td>
+
Engine temperature warmer Motor, for temperature correction during cold start conditions
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMTP
+
</td>
+
<td>
+
Exhaust gas dew point temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMTRKH
+
</td>
+
<td>
+
Exhaust gas temperature correction via thermal reaction catalyst heating
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMTRKH2
+
</td>
+
<td>
+
Exhaust gas temperature correction via thermal reaction catalyst heating, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMWMK
+
</td>
+
<td>
+
Temperature offset for calculating heat quantities
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TIKATMOE
+
</td>
+
<td>
+
Temperature correction in catalyst without exothermic reaction, tikatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATMOE
+
</td>
+
<td>
+
Temperature correction near catalyst without exothermic reaction, tkatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKSTBFA
+
</td>
+
<td>
+
Model temperature post-cat initial value via B_faatm requirement
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TNLATM
+
</td>
+
<td>
+
Minimum ECU delay time for exhaust gas temperature model – Abstellzeit
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TNLATMTM
+
</td>
+
<td>
+
When tmot > threshold ECU delay requirement B_nlatm = 1
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TNLATMTU
+
</td>
+
<td>
+
When tumg (tatu – ATM) > threshold ECU delay requirement
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TUMTAIT
+
</td>
+
<td>
+
Initialising value for ambient temperature from TANS
+
</td>
+
</tr>
+
<tr>
+
<td>
+
VTUMTAT
+
</td>
+
<td>
+
Vehicle speed threshold for TANS ® ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
WMABGKH
+
</td>
+
<td>
+
Factor for heat quantity correction via catalyst heating for dew points
+
</td>
+
</tr>
+
<tr>
+
<td>
+
WMABGKH2
+
</td>
+
<td>
+
Factor for heat quantity correction via catalyst heating for dew points, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
WMKATKH
+
</td>
+
<td>
+
Factor for heat quantity correction via catalyst heating for dew points after catalyst
+
</td>
+
</tr>
+
<tr>
+
<td>
+
WMKATKH2
+
</td>
+
<td>
+
Factor for heat quantity correction via catalyst heating for dew points after catalyst, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATAKRML
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model (manifold)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATAKRML2
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model (manifold), cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMAML
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMAML2
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMIKKML
+
</td>
+
<td>
+
Time constant for catalyst temperature model – Temperature in catalyst tikatm during cooling
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMIKKML2
+
</td>
+
<td>
+
Time constant for catalyst temperature model – Temperature in catalyst tikatm during cooling, bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMIKML
+
</td>
+
<td>
+
Time constant for catalyst temperature model – Temperature in catalyst, tikatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMIKML2
+
</td>
+
<td>
+
Time constant for catalyst temperature model – Temperature in catalyst, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMKKML
+
</td>
+
<td>
+
Time constant for catalyst temperature model – catalyst temperature tkatm during cooling
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMKKML2
+
</td>
+
<td>
+
Time constant for catalyst temperature model – catalyst temperature tkatm during cooling, bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMKML
+
</td>
+
<td>
+
Time constant for catalyst temperature model – catalyst temperature tkatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMKML2
+
</td>
+
<td>
+
Time constant for catalyst temperature model – catalyst temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMRML
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model – exhaust pipe wall temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATMRML2
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model – exhaust pipe wall temperature Bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATRKRML
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model – manifold wall temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZATRKRML2
+
</td>
+
<td>
+
Time constant for exhaust gas temperature model – manifold wall temperature, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
Variable
+
</td>
+
<td>
+
Description
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMLL
+
</td>
+
<td>
+
Condition for time constant during cooling at idle
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMLL2
+
</td>
+
<td>
+
Condition for time constant during cooling at idle
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMST
+
</td>
+
<td>
+
Condition for tabgmst, tkatmst initial value calculation
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMST2
+
</td>
+
<td>
+
Condition for tabgmst, tkatmst calculation, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPA
+
</td>
+
<td>
+
Condition: dew point before catalyst exceeded
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPA2
+
</td>
+
<td>
+
Condition: dew point 2 before catalyst exceeded
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPF
+
</td>
+
<td>
+
Condition: dew point before catalyst exceeded (last trip)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPF2
+
</td>
+
<td>
+
Condition: dew point before catalyst exceeded (last trip) cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPK
+
</td>
+
<td>
+
Condition: dew point after catalyst exceeded
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPK2
+
</td>
+
<td>
+
Condition: dew point 2 after catalyst exceeded
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPL
+
</td>
+
<td>
+
Condition: dew point after catalyst exceeded (last trip)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ATMTPL2
+
</td>
+
<td>
+
Condition: dew point after catalyst exceeded (last trip) cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_FAATM
+
</td>
+
<td>
+
Condition: functional requirements for dew point end times
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_KH
+
</td>
+
<td>
+
Condition: catalyst heating
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_KW
+
</td>
+
<td>
+
Condition: catalyst warming
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_LL
+
</td>
+
<td>
+
Condition: idle
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_NACHL
+
</td>
+
<td>
+
Condition: ECU delay
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_NACHLEND
+
</td>
+
<td>
+
Condition: ECU delay ended
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_NLATM
+
</td>
+
<td>
+
Condition: ECU delay exhaust gas temperature model probe protection
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_PWF
+
</td>
+
<td>
+
Condition: Power fail
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_SA
+
</td>
+
<td>
+
Condition: Overrun cut-off
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_ST
+
</td>
+
<td>
+
Condition: Start
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_STEND
+
</td>
+
<td>
+
Condition: End of start conditions achieved
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_STNDNL
+
</td>
+
<td>
+
Condition: Beginning of ECU delay or end of start conditions (1 ® 0)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_TFU
+
</td>
+
<td>
+
Condition: Ambient temperature sensor available
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_TRKH
+
</td>
+
<td>
+
Condition: Catalyst heating, thermal reaction effective
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_UHRRMIN
+
</td>
+
<td>
+
Condition: timer with a relative number of minutes
+
</td>
+
</tr>
+
<tr>
+
<td>
+
B_UHRRSEC
+
</td>
+
<td>
+
Condition: timer with a relative number of minutes
+
</td>
+
</tr>
+
<tr>
+
<td>
+
DFP_TA
+
</td>
+
<td>
+
ECU internal error path number: intake air temperature TANS (charge air)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
DFP_TUM
+
</td>
+
<td>
+
ECU Internal error path number: ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ETAZWIMT
+
</td>
+
<td>
+
Actual ignition angle efficiency average for exhaust gas temperature model (200 ms)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ETAZWIST
+
</td>
+
<td>
+
Actual ignition angle efficiency
+
</td>
+
</tr>
+
<tr>
+
<td>
+
E_TA
+
</td>
+
<td>
+
Error flag: TANS
+
</td>
+
</tr>
+
<tr>
+
<td>
+
E_TUM
+
</td>
+
<td>
+
Error flag: ambient temperature tumg
+
</td>
+
</tr>
+
<tr>
+
<td>
+
IMLATM
+
</td>
+
<td>
+
Integral of air mass flows from engine start bis Max.wert
+
</td>
+
</tr>
+
<tr>
+
<td>
+
IMLATM_W
+
</td>
+
<td>
+
Integral of air mass flows from end of start conditions up to the maximum value, (Word)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
IWMATM2_W
+
</td>
+
<td>
+
Heat quantity for Condensation - dew points exhaust gas/catalyst (word), cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
IWMATM_W
+
</td>
+
<td>
+
Heat quantity for Condensation - dew points exhaust gas/catalyst (word)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
LAMSBG2_W
+
</td>
+
<td>
+
Desired lambda limit (word), cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
LAMSBG_W
+
</td>
+
<td>
+
Desired lambda limit (word)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ML_W
+
</td>
+
<td>
+
Filtered air mass flow (word)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
NMOT
+
</td>
+
<td>
+
Engine speed
+
</td>
+
</tr>
+
<tr>
+
<td>
+
RL
+
</td>
+
<td>
+
Relative cylinder charge
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGKRM2_W
+
</td>
+
<td>
+
Exhaust gas temperature in manifold from the model, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGKRM_W
+
</td>
+
<td>
+
Exhaust gas temperature in manifold from the model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGM
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from the model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGM2
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from the model, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGM2_W
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from the model (word) cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGMAB
+
</td>
+
<td>
+
Exhaust gas temperature during engine switch-off
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGMAB2
+
</td>
+
<td>
+
Exhaust gas temperature during engine switch-off (model) cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGMST
+
</td>
+
<td>
+
Exhaust gas temperature at engine start
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGMST2
+
</td>
+
<td>
+
Exhaust gas temperature at engine start, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABGM_W
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from the model (word)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABSTATM_W
+
</td>
+
<td>
+
Stop time in ECU delay for exhaust gas temperature model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABSTMX_W
+
</td>
+
<td>
+
Stop time maximum query for exhaust gas temperature model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TABST_W
+
</td>
+
<td>
+
Stop time
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TAKRKF
+
</td>
+
<td>
+
Steady-state manifold exhaust gas temperature without correction
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TAKRKF2
+
</td>
+
<td>
+
Steady-state manifold exhaust gas temperature without correction, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TAKRSTC
+
</td>
+
<td>
+
Steady-state exhaust gas temperature in manifold in °C
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TAKRSTC2
+
</td>
+
<td>
+
Steady-state exhaust gas temperature in manifold, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TANS
+
</td>
+
<td>
+
Intake air temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATAKRML
+
</td>
+
<td>
+
Output from PT1 element: exhaust gas temperature influence on tabgkrm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATAKRML2
+
</td>
+
<td>
+
Output from PT1 element: exhaust gas temperature influence on tabgkrm, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMAML
+
</td>
+
<td>
+
Output from PT1 element: exhaust gas temperature influence on tabgm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMAML2
+
</td>
+
<td>
+
Output from PT1 element: exhaust gas temperature influence on tabgm, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMKF
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from map KFTATM
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMKF2
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from map KFTATM, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMRML
+
</td>
+
<td>
+
Output from PT1 element: exhaust pipe wall temperature effect from tabgm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMRML2
+
</td>
+
<td>
+
Output from PT1 element: exhaust pipe wall temperature effect from tabgm, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMSTA
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from the steady-state model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATMSTA2
+
</td>
+
<td>
+
Exhaust gas temperature before catalyst from the steady-state model, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATRKRML
+
</td>
+
<td>
+
Output from PT1 element: exhaust pipe wall temperature effect from tabgkrm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATRKRML2
+
</td>
+
<td>
+
Output from PT1 element: exhaust pipe wall temperature effect from tabgkrm, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TATU
+
</td>
+
<td>
+
Intake air temperature or ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TEXOIKM2_W
+
</td>
+
<td>
+
Exotherme temperature increase in catalyst for tikatm, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TEXOIKM_W
+
</td>
+
<td>
+
Exotherme temperature increase in catalyst for tikatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TEXOM2_W
+
</td>
+
<td>
+
Exotherme temperature increase in catalyst for tkatm2, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TEXOM_W
+
</td>
+
<td>
+
Exotherme temperature increase in catalyst for tkatm
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TIKATM
+
</td>
+
<td>
+
Exhaust gas temperature in catalyst from the model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TIKATM2
+
</td>
+
<td>
+
Exhaust gas temperature in catalyst from the model, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TIKATM2_W
+
</td>
+
<td>
+
Exhaust gas temperature in catalyst from the model, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TIKATM W
+
</td>
+
<td>
+
Exhaust gas temperature in catalyst from the model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATM
+
</td>
+
<td>
+
Catalyst temperature from the model
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATM2
+
</td>
+
<td>
+
Catalyst temperature from the model, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATM2_W
+
</td>
+
<td>
+
Catalyst temperature from the model (word), cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATMAB
+
</td>
+
<td>
+
Exhaust gas temperature after catalyst through engine switch-off (model)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATMAB2
+
</td>
+
<td>
+
Exhaust gas temperature after catalyst through engine switch-off (model), cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATMST
+
</td>
+
<td>
+
Catalyst temperature model initial value as a function of switch-off value, switch-off time
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATMST2
+
</td>
+
<td>
+
Catalyst temperature model initial value as a function of switch-off value, switch-off time, bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TKATM_W
+
</td>
+
<td>
+
Catalyst temperature from the model (word)
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TMOT
+
</td>
+
<td>
+
Engine temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TMST
+
</td>
+
<td>
+
Engine start temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
TUMG
+
</td>
+
<td>
+
Ambient temperature
+
</td>
+
</tr>
+
<tr>
+
<td>
+
VFZG
+
</td>
+
<td>
+
Vehicle speed
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZWMATM
+
</td>
+
<td>
+
Counter for repeated starts and factor for heat quantity threshold
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZWMATM2
+
</td>
+
<td>
+
Counter for repeated starts and factor for heat quantity threshold, cylinder bank 2
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZWMATMF
+
</td>
+
<td>
+
Counter for repeated starts and factor for heat quantity threshold upstream
+
</td>
+
</tr>
+
<tr>
+
<td>
+
ZWMATMF2
+
</td>
+
<td>
+
Counter for repeated starts and factor for heat quantity threshold upstream, cylinder bank 2
+
</td>
+
</tr>
+
</table>
+

Revision as of 10:00, 11 September 2011

See the funktionsrahmen for the following diagrams:

zwgru-zwgru

zwgru-zw-nws Sub-function ZW_NWS: Provision for binary or continously variable camshaft control

zwgru-dzw-nws Sub-function DZW_NWS: Provision for binary or continously variable camshaft control (delta-ignition angle)

ZWGRU 23.110 Function Description


The fundamental ignition angle is provided by the map KFZW. The sub-function ZW_NWS describes the provision for any necessary camshaft timing (NWS). For binary camshaft control, the factor fnwue switches seamlessly between the maps KFZW and KFZW2. In the case of continuously variable camshaft control which depends on the camshaft overlap angle wnwue, an ignition angle correction DZWNWSUE added to KFZW. The currently valid camshaft control version is defined by the system constant SY_NWS in the software generation:


SY_NWS = 0: no camshaft control


SY_NWS = 1: binary camshaft control


SY_NWS = 2: continuously variable NWS


SY_NWS > 2: not defined.


The software is translated conditionally, i.e. only one variant is available in the EPROM. SY_NWS is not in the EPROM and cannot be applied. The same additive ignition angle correction is performed as when calculating the optimum ignition angle (see %MDBAS), i.e. exhaust gas recirculation and lambda dependence are considered. The temperature dependence is considered in a separate function (%ZWWL). The result is the ignition angle for cylinder bank 1 (zwref) which is also the reference for cylinder bank 2. For cylinder bank 2, the ignition angle offset dzwb2 is added to the ignition angle.


ZWGRU 23.110 Application Notes


The maps KFZW and KFZW2 are applied when the engine is warm for the respective camshaft control position, exhaust gas recirculation is inactive and lambda = 1. If the engine does not knock, the optimal ignition angle is input. For engine knock, the knock limit is input.


Parameter


Description


CNOKT


Codeword for lower octane fuel


CWZWBANK


Codeword for enabling cylinder-specific ignition angle offsets


DZWNWSUE


Delta ignition angle depending on camshaft overlap angle


KFDWSZ


Delta ignition angle for cylinder bank 1-specific ignition advance; through camshaft control


KFDWSZ2


Delta ignition angle for cylinder bank 2-specific ignition advance; through camshaft control


KFDZK


Delta ignition angle during knock


KFDZWKG


Ignition angle correction by moving the knock limit


KFSWKFZK


Ignition angle retardation threshold for switching between ignition angle maps


KFZW


Ignition angle map


KFZW2


Ignition angle map, variant 2


TMZIZWV


Engine temperature threshold for enabling cylinder-specific ignition angle adjustment


TSWKR


Time lag for summing ignition angle retardation queries


VZIZWV


Vehicle speed threshold for disabling cylinder-specific ignition angle adjustment


Variable


Description


B_KFZK


Condition flag for anti-knock map


B_KRDWS


Condition flag for knock control safety retardation


B_NOZWE


Condition flag for no ignition angle intervention on the engine torque structure


C_INI


Condition flag for intialising ECU


DZWB2


Ignition angle offset for cylinder bank 2


DZWBANK


Cylinder-bank specific ignition angle offset


DZWKG


Delta ignition angle for moving the knock limit


DZWOAG


Exhaust gas recirculation rate-dependent ignition angle correction of the optimum ignition angle


DZWOL


Lambda-dependent ignition angle correction of the optimum ignition angle


DZWZK


Delta ignition angle during knock


FNWUE


Weighting factor for ignition angle overlap (inlet)


LAMBAS


Basic lambda


NMOT


Engine speed


NMOT W


Engine speed (Word)


RL_W


Relative cylinder charge (Word)


SY_NWS


System constant for camshaft control: none, binary (on/off) or continuously variable


SY_ZIZWV


Text must be provided by Mrs Sauer


TMOT


Engine temperature


VFZG


Vehicle speed


WKRMA


Average of the ignition angle retardation during knock control, general (in limp mode with safety)


WNWUE


Camshaft overlap angle


ZWGRU


Fundamental ignition angle


ZWNWS


Fundamental ignition angle taking camshaft control into consideration


ZZYLZUE


ECU cylinder counter for ignition calculation


Personal tools